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Figure 1: Each concept in this diagram corresponds to one section in the NO BULLSHIT GUIDE TO MATH AND PHYSICS.


http://minireference.com

Linear algebra concept maps

numbers

—
refer to (y:ax2+bx+c
ph

o)
y=mx+b
are used in /

equations

(f(x—h)+k)
quadratic egn

/[ systems of equations)
ve

\

function inverse

SO

In(x)

()

function graphs

functions

algebral

[high school math|

h\
tan(x)

trig identities

\
radians

triangle trigonometry

parallelepiped

ellipse
are plotted in the
cartesian plane) (hyperbola parallelogram

row operations

can be repre-
sented as

are u?ed in

elementary

(Gauss-Jordan elimination) .
matrices

T
to obtain the

augmented b
matrices | can be repre

adjugate
matrix

matrix equation

matrix inverse

determinants

systems of
linear quations

vectors

sented as

S

( matrix multiplication)

|computational linear algebral

eigenspaces
(row space

column space

\
(null space) left null space)

[matrix fundamental ]

vector spaces /

vectors

have

a
\

[geometry|

(coordinate systems)—(change of basis)

‘

expressed w.

__ respect to a
(o)

dot product
vector products -

cross product

are similar to

complex numbers

(vectors components)

( cooridnate projections)

determinants [ e

/(span) (Iinear independence

vector spaces

) areas
=

contain

systems of

examples: linear quations

contain

intersection ' N
solution

of planes

points

geometrical linear aIgebra|

geometry

orthogonality

2x2 determinant

3x3 determinant

(abstract inner product spaces)

(abstract vector spaces -
polynomials

number of
dimensions

—examples:

matrices

| theoretical linear algebra

Figure 2: This concept map illustrates the prerequisite topics of high school math required to understand vectors. Vectors are
the building blocks of computational, geometrical, and theoretical linear algebra. See gum.co/noBSLA for more details.
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and matrix computations play an important role throughout linear algebra. Matrices are used to
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Figure 6: Linear algebra has many applications in physics, chemistry, engineering, economics, business, computing, signal
processing, probability theory, and quantum mechanics.

If you want to learn more about linear algebra, you should check out the NO BULLSHIT GUIDE TO LINEAR ALGEBRA,

ISBN 978-0-9920010-2-5.

This short textbook covers all of the above topics and is available at gum.co/noBSLA .
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